3.4.74 \(\int \frac {\cos ^{\frac {5}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx\) [374]

Optimal. Leaf size=128 \[ \frac {21 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a d}-\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a d}-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}+\frac {7 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 a d}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))} \]

[Out]

21/5*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-5/3*(cos(1/2*d*
x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+7/5*cos(d*x+c)^(3/2)*sin(d*x+c)
/a/d-cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))-5/3*sin(d*x+c)*cos(d*x+c)^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 128, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {4349, 3904, 3872, 3854, 3856, 2719, 2720} \begin {gather*} -\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a d}+\frac {21 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a d}+\frac {7 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 a d}-\frac {5 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (a \sec (c+d x)+a)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(5/2)/(a + a*Sec[c + d*x]),x]

[Out]

(21*EllipticE[(c + d*x)/2, 2])/(5*a*d) - (5*EllipticF[(c + d*x)/2, 2])/(3*a*d) - (5*Sqrt[Cos[c + d*x]]*Sin[c +
 d*x])/(3*a*d) + (7*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*a*d) - (Cos[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Sec
[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3904

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[Cot[e + f*x
]*((d*Csc[e + f*x])^n/(f*(a + b*Csc[e + f*x]))), x] - Dist[1/a^2, Int[(d*Csc[e + f*x])^n*(a*(n - 1) - b*n*Csc[
e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))} \, dx\\ &=-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {7 a}{2}+\frac {5}{2} a \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx}{a^2}\\ &=-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac {\left (5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx}{2 a}+\frac {\left (7 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)} \, dx}{2 a}\\ &=-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}+\frac {7 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 a d}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac {\left (5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx}{6 a}+\frac {\left (21 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{10 a}\\ &=-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}+\frac {7 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 a d}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac {5 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a}+\frac {21 \int \sqrt {\cos (c+d x)} \, dx}{10 a}\\ &=\frac {21 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a d}-\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a d}-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}+\frac {7 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 a d}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 1.69, size = 314, normalized size = 2.45 \begin {gather*} \frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (\frac {2 i \sqrt {2} e^{-i (c+d x)} \left (63 \left (1+e^{2 i (c+d x)}\right )+63 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )+25 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-e^{2 i (c+d x)}\right )\right ) \sec (c+d x)}{d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}+\frac {-96 \cot (c)-30 \csc (c)-20 \cos (d x) \sin (c)+6 \cos (2 d x) \sin (2 c)-30 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {d x}{2}\right )-20 \cos (c) \sin (d x)+6 \cos (2 c) \sin (2 d x)}{d \sqrt {\cos (c+d x)}}\right )}{15 a (1+\sec (c+d x))} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(5/2)/(a + a*Sec[c + d*x]),x]

[Out]

(Cos[(c + d*x)/2]^2*(((2*I)*Sqrt[2]*(63*(1 + E^((2*I)*(c + d*x))) + 63*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c
 + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 25*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt
[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))])*Sec[c + d*x])/(d*E^(I*(c + d
*x))*(-1 + E^((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]) + (-96*Cot[c] - 30*Csc[c] - 20*Cos[d*
x]*Sin[c] + 6*Cos[2*d*x]*Sin[2*c] - 30*Sec[c/2]*Sec[(c + d*x)/2]*Sin[(d*x)/2] - 20*Cos[c]*Sin[d*x] + 6*Cos[2*c
]*Sin[2*d*x])/(d*Sqrt[Cos[c + d*x]])))/(15*a*(1 + Sec[c + d*x]))

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 229, normalized size = 1.79

method result size
default \(-\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (25 \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+63 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+48 \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-56 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-30 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+23 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{15 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(229\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-1/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^
(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(25*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+63*EllipticE(cos(1/2*d*x+1/2*c),2
^(1/2)))+48*sin(1/2*d*x+1/2*c)^8-56*sin(1/2*d*x+1/2*c)^6-30*sin(1/2*d*x+1/2*c)^4+23*sin(1/2*d*x+1/2*c)^2)/a/co
s(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)
^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(5/2)/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 1.00, size = 208, normalized size = 1.62 \begin {gather*} \frac {2 \, {\left (6 \, \cos \left (d x + c\right )^{2} - 4 \, \cos \left (d x + c\right ) - 25\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 25 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 25 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 63 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 63 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{30 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/30*(2*(6*cos(d*x + c)^2 - 4*cos(d*x + c) - 25)*sqrt(cos(d*x + c))*sin(d*x + c) - 25*(-I*sqrt(2)*cos(d*x + c)
 - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 25*(I*sqrt(2)*cos(d*x + c) + I*sqrt(
2))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 63*(-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weier
strassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 63*(I*sqrt(2)*cos(d*x + c) + I*
sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d*x + c)
+ a*d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)/(a+a*sec(d*x+c)),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 8011 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(5/2)/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\cos \left (c+d\,x\right )}^{5/2}}{a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(5/2)/(a + a/cos(c + d*x)),x)

[Out]

int(cos(c + d*x)^(5/2)/(a + a/cos(c + d*x)), x)

________________________________________________________________________________________